چطور این مقاله مهندسی برق را دانلود کنم؟
فایل انگلیسی این مقاله با شناسه 2008875 رایگان است. ترجمه چکیده این مقاله مهندسی برق در همین صفحه قابل مشاهده است. شما می توانید پس از بررسی این دو مورد نسبت به خرید و دانلود مقاله ترجمه شده اقدام نمایید
حجم فایل فارسی :
967 کیلو بایت
نوع فایل های ضمیمه :
Pdf+Word
کلمه عبور همه فایلها :
www.daneshgahi.com
عنوان فارسي
تبدیل موجک Q ی قابل تنظیم بر اساس معیار انتروپی چندمقیاسی برای دستهبندی مکانیزه سیگنالهای EEG ی حملهای صرع
عنوان انگليسي
Tunable-Q Wavelet Transform Based Multiscale Entropy Measure for Automated Classification of Epileptic EEG Signals
این مقاله چند صفحه است؟
این مقاله ترجمه شده مهندسی برق شامل 18 صفحه انگلیسی به صورت پی دی اف و 26 صفحه متن فارسی به صورت ورد تایپ شده است
Abstract
This paper analyzes the underlying complexity and non-linearity of electroencephalogram (EEG) signals by computing a novel multi-scale entropy measure for the classification of seizure, seizure-free and normal EEG signals. The quality factor (Q) based multi-scale entropy measure is proposed to compute the entropy of the EEG signal in different frequency-bands of interest. The Q -based entropy (QEn) is computed by decomposing the signal with the tunable-Q wavelet transform (TQWT) into the number of sub-bands and estimating K-nearest neighbor (K-NN) entropies from various sub-bands cumulatively. The optimal selection of Q and the redundancy parameter (R) of TQWT showed better robustness for entropy computation in the presence of high- and low-frequency components. The extracted features are fed to the support vector machine (SVM) classifier with the wrapper-based feature selection method. The proposed method has achieved accuracy of 100% in classifying normal (eyes-open and eyes-closed) and seizure EEG signals, 99.5% in classifying seizure-free EEG signals (from the hippocampal formation of the opposite hemisphere of the brain) from seizure EEG signals and 98% in classifying seizure-free EEG signals (from the epileptogenic zone) from seizure EEG signals, respectively, using the SVM classifier. We have also achieved classification accuracies of 99% and 98.6% in classifying seizure versus non-seizure EEG signals and the individual three classes, namely normal, seizure-free and seizure EEG signals, respectively. The performance measure of the proposed multi-scale entropy has been found to be comparable with the existing state of the art epileptic EEG signals classification methods studied using the same database.
Keywords:
Tunable-Q wavelet transform; K-nearest neighbor entropy; EEG signal
سایر منابع مهندسی برق در زمینه تبدیل موجک