چطور این مقاله مهندسی کامپیوتر و IT را دانلود کنم؟
فایل انگلیسی این مقاله با شناسه 2008081 رایگان است. ترجمه چکیده این مقاله مهندسی کامپیوتر و IT در همین صفحه قابل مشاهده است. شما می توانید پس از بررسی این دو مورد نسبت به خرید و دانلود مقاله ترجمه شده اقدام نمایید
حجم فایل فارسی :
1 مگا بایت
نوع فایل های ضمیمه :
Pdf+Word
کلمه عبور همه فایلها :
www.daneshgahi.com
عنوان فارسي
استفاده از الگوریتم الگوی تکرار شونده، برای تشخیص جوامع در شبکههای اجتماعی
عنوان انگليسي
Community detection in social networks using user frequent pattern mining
نویسنده/ناشر/نام مجله
Knowledge and Information Systems
این مقاله چند صفحه است؟
این مقاله ترجمه شده مهندسی کامپیوتر و IT شامل 28 صفحه انگلیسی به صورت پی دی اف و 31 صفحه متن فارسی به صورت ورد تایپ شده است
چکیده
اخیراٌ، در وب سایتهای شبکهی اجتماعی شاهد حجمی وسیعی از دادههای متنوع هستیم. تحلیل یک چنین دادههایی منجر به کشف اطلاعات و روابط ناشناخته در این شبکهها گردیده است. شناسایی جوامع، فرآیندی است که به شناسایی گرههای مشابه میپردازد و لذا میتوان آنرا وظیفه ای چالش بر انگیز در حیطهی تحلیل دادههای شبکههای اجتماعی دانست. این علم به طور گسترده در جامعهی شبکههای اجتماعی و آنهم از نظر ساختارهای گراف موجود در این شبکهها مورد مطالعه قرار گرفته است. شبکههای اجتماعی آنلاین و همچنین ساختارهای گراف، شامل اطلاعات کاربردی مفیدی در داخل شبکهها میباشند. استفاده از این اطلاعات میتواند بهبود فرآیند کشف یک جامعه را به همراه داشته باشد. در این مطالعه، روشی را برای کشف یک جامعه ارائه میدهیم. علاوه بر استفاده از ارتباطات بین گرهها به منظور بهبود کیفیت جوامع کشف شده، اطلاعات محتوا را نیز مورد استفاده قرار میدهیم. این روش را میتوان روشی جدید بر مبنای الگوهای تکرار شونده و فعالیتهای کاربران در شبکه و مخصوصاٌ سایتهای شبکههای اجتماعی ای دانست که کاربران یک سری فعالیت سلیقه ای را انجام میدهند. روش پیشنهادی ما دو نقش را ایفا میسازد. در ابتدا بر مبنای فعالیتهای کاربران در شبکه، بعضی از جوامعی که دارای کاربران مشابهی میباشند را کشف میکند و به دنبال آن از روابط اجتماعی استفاده کرده و جوامع بیشتری را کشف میسازد. از مقیاس اف، به منظور ارزیابی نتایج دو مجموعهی داده ای واقعی استفاده میکنیم (Blogcatalog /Flicker). اثبات خواهیم نمود که روش پیشنهادی میتواند کیفیت کشف جوامع را بهبود دهد.
1-مقدمه
بیش از دو دهه است که تراکنشهایی که بین آرتیستها صورت میگیرد، به همراه تعیین ساختارهای مهم جوامع در شبکههای اجتماعی مورد تحلیل قرار گرفته است [7]. این امکان وجود دارد که بتوان شبکههای اجتماعی را از جنبههای متفاوتی مشاهده کرد؛ مانند فیس بوک که به طور خاص برای تعاملات اجتماعی طراحی شدهاند و یا FLICKER که سرویسهای مختلفی مانند اشتراک گذاری محتوا میپردازد و تعاملات اجتماعی وسیعی در بین کاربران آن رخ میدهد....
شبکههای اجتماعی تشخیص جامعه کاوش الگوی تکرار شونده
:کلمات کلیدی
Abstract
Recently, social networking sites are offering a rich resource of heterogeneous data. The analysis of such data can lead to the discovery of unknown information and relations in these networks. The detection of communities including ‘similar’ nodes is a challenging topic in the analysis of social network data, and it has been widely studied in the social net-working community in the context of underlying graph structure. Online social networks, in addition to having graph structures, include effective user information within networks. Using this information leads to enhance quality of community discovery. In this study, a method of community discovery is provided. Besides communication among nodes to improve the quality of the discovered communities, content information is used as well. This is a new approach based on frequent patterns and the actions of users on networks, particularly social networking sites where users carry out their preferred activities. The main contributions of proposed method are twofold: First, based on the interests and activities of users on networks, some small communities of similar users are discovered, and then by using social relations, the discovered communities are extended. The F-measure is used to evaluate the results of two real-world datasets (Blogcatalog and Flickr), demonstrating that the proposed method principals to improve the community detection quality.
Keywords:
Social networks Community detection Frequent pattern mining
سایر منابع مهندسی کامپیوتر و IT-نرم افزار در زمینه شبکه اجتماعی