Abstract
Purpose: Evidence suggests that femoroacetabular impingement (FAI) in athletes may increase the risk of anterior cruciate ligament (ACL) injury. This study correlates ACL injury with hip range of motion in a consecutive series of elite, contact athletes and tests the hypothesis that a restriction in the available hip axial rotation in a dynamic in silico model of a simulated pivot landing would increase ACL strain and the risk of ACL rupture
Methods: Three hundred and twenty-four football athletes attending the 2012 NFL National Invitational Camp were examined. Hip range of internal rotation was measured and correlated with a history of ACL injury and surgical repair. An in silico biomechanical model was used to study the effect of FAI on the peak relative ACL strain developed during a simulated pivot landing
Results: The in vivo results demonstrated that a reduction in internal rotation of the left hip was associated with a statistically significant increased odds of ACL injury in the ipsilateral or contralateral knee (OR 0.95, p = 0.0001 and p < 0.0001, respectively). A post-estimation calculation of odds ratio for ACL injury based on deficiency in hip internal rotation demonstrated that a 30-degree reduction in left hip internal rotation was associated with 4.06 and 5.29 times greater odds of ACL injury in the ipsilateral and contralateral limbs, respectively. The in silico model demonstrated that FAI systematically increased the peak ACL strain predicted during the pivot landing
Conclusion: FAI may be associated with ACL injury because of the increased resistance to femoral internal axial rotation during a dynamic maneuver such as a pivot landing. This insight may lead to better interventions to prevent ACL injury and improved understanding of ACL reconstruction failure