چطور این مقاله مهندسی کامپیوتر و IT را دانلود کنم؟
فایل انگلیسی این مقاله با شناسه 2006651 رایگان است. ترجمه چکیده این مقاله مهندسی کامپیوتر و IT در همین صفحه قابل مشاهده است. شما می توانید پس از بررسی این دو مورد نسبت به خرید و دانلود مقاله ترجمه شده اقدام نمایید
حجم فایل انگلیسی :
261 Kb
حجم فایل فارسی :
696 کیلو بایت
نوع فایل های ضمیمه :
Pdf+Word
کلمه عبور همه فایلها :
www.daneshgahi.com
عنوان فارسي
یک رویکرد تکاملی تفاضلی برای رده بندی ضایعات فلج چندگانه
عنوان انگليسي
A Differential Evolution Approach for Classification of Multiple Sclerosis Lesions
نویسنده/ناشر/نام مجله
IEEE Workshop on ICT solutions for eHealth
این مقاله چند صفحه است؟
این مقاله ترجمه شده مهندسی کامپیوتر و IT شامل 6 صفحه انگلیسی به صورت پی دی اف و 20 صفحه متن فارسی به صورت ورد تایپ شده است
چکیده
مساله استخراج خودکار دانشی نوین و مطلوب از مقدار زیادی داده زمانی که تشخیص الگو با استفاده از روش های کلاسیک احتمالاتی مشکل باشد، معمولاً به صورت ابتکاری انجام می شود. در این مقاله یک روش تکاملی، بر مبنای تفاضل تکاملی، پیشنهاد شده است، که قابلیت شناسایی خودکار یک مجموعه جامع از دستورات رده بندی به صورت اگر...آنگاه بر مبنای پایگاه داده ضایعات بالقوه فلج چندگانه را دارد. علاوه بر این، این ابزار همچنین خواص متمایز کننده پایگاه داده را در رده بندی نمونه ها مشخص می کند. بنابراین، این ابزار تکاملی یک سیستم مبنای تصمیم مؤثر برای تصمیمات کلینیکی فراهم می آورد، که می تواند به عنوان یک ابزار مفید متخصصان پزشکی را در کسب بینشی برای تعیین دلایل مربوط به ارزیابی ناهنجاری های مربوط به جراحات یاری دهد.
1-مقدمه
فلج چندگانه (MS) یک بیماری طولانی مدت و ناتوان کننده مربوط به سیستم اعصاب مرکزی می باشد که جریان اطلاعات را در داخل مغز و بین مغز و بدن مختل می کند (1). این امر منجر به ایجاد چندین نشانه و علائم می شود، که شامل موارد فیزیکی، روحی و در بعضی حالات مشکلات روانی می شود. برخی از این علائم شاید دید دوگانه، نابینایی یک چشم، ضعف عضلات، مشکلات حسی و هماهنگی باشد. MS متداول ترین اختلالی است که سیستم عصبی مرکزی را تحت تاثیر قرار می دهد...
فلج چندگانه رده بندی استخراج دانش دستورات اگر...آنگاه تفاضل تکاملی
:کلمات کلیدی
Abstract
The problem of automatically extracting novel and interesting knowledge from large amount of data is often performed heuristically when pattern extraction through classical statistical methods is found hard. In this paper an evolutionary approach, based on Differential Evolution, is proposed, which is able to perform the automatic discovery of comprehensible classification rules as a set of IF...THEN rules over a database of Multiple Sclerosis potential lesions. Moreover, this tool also determines which the most discriminant database attributes are in categorizing instances. Therefore, this evolutionary tool provides an efficient decision support system for clinical decisions, that could be a useful tool for medical experts to help them gain insight into the reasons for assessing the abnormality of a lesion
Keywords:
Multiple Sclerosis classification knowledge extraction IF...THEN rules Differential Evolution
سایر منابع مهندسی کامپیوتر و IT-نرم افزار در زمینه داده کاوی در پزشکی