Abstract
A new electrostatic thruster technology appears feasible using nano-particles with microand nano-electromechanical systems (NEMS/MEMS) fabrication technology. MEMS technologies are already being explored as a possible approach to achieve scalability and system simplification by creating higher efficiency “flat panel” thrusters. They also appear to offer a way to eliminate lifelimiting physical characteristics present in state-of-the-art ion propulsion by eliminating the need for a discharge chamber and reducing or eliminating charge-exchange (CEX) collision effects in the ion optics region of the thruster. Further, by considering the use of nano-particles as a propellant with electric field-emission based MEMS/NEMS thruster concepts, important new performance improvements appear possible. These include (1) operations at high power levels at much lower system-level specific mass, (2) even higher efficiency, (3) a further increase in thrust densities over present-day ion propulsion technologies, and (4) the ability to tune desired thrust characteristics by simply changing nano-particle size and shape. At the University of Michigan, the nano-particle electrostatic propulsion concept is called nanoFET (nano-Field Emission Thruster) and can be thought of as a flat-panel ion thruster that can be designed for variable power and particle sizes