Abstract
Within highly competitive business environments, data mining (DM) is viewed as a significant technology to enhance decision-making processes by transforming data into valuable and actionable information to gain competitive advantage. There appears, however, to be a dearth of empirical case studies which consider in detail the initial stages in DM management to enable apt foundation for its later successful implementation. Our research applied a multi-method strategy to determine the critical success factors of embryonic DM implementation. We propose and validate, through a series of cases, a conceptual framework to guide practitioners’ adoption of DM. Our findings reveal additional issues for applied decision making in the context of DM success