Abstract
We develop new, higher-order numerical one-step methods and apply them to several examples to investigate approximate discrete solutions of nonlinear differential equations. These new algorithms are derived from the Adomian decomposition method (ADM) and the Rach–Adomian–Meyers modified decomposition method (MDM) to present an alternative to such classic schemes as the explicit Runge–Kutta methods for engineering models, which require high accuracy with low computational costs for repetitive simulations in contrast to a one-size-fits-all philosophy. This new approach incorporates the notion of analytic continuation, which extends the region of convergence without resort to other techniques that are also used to accelerate the rate of convergence such as the diagonal Padé approximants or the iterated Shanks transforms. Hence global solutions instead of only local solutions are directly realized albeit in a discretized representation. We observe that one of the difficulties in applying explicit Runge–Kutta one-step methods is that there is no general procedure to generate higher-order numeric methods. It becomes a time-consuming, tedious endeavor to generate higher-order explicit Runge–Kutta formulas, because it is constrained by the traditional Picard formalism as used to represent nonlinear differential equations. The ADM and the MDM rely instead upon Adomian’s representation and the Adomian polynomials to permit a straightforward universal procedure to generate higher-order numeric methods at will such as a 12th-order or 24th-order one-step method, if need be. Another key advantage is that we can easily estimate the maximum step-size prior to computing data sets representing the discretized solution, because we can approximate the radius of convergence from the solution approximants unlike the Runge–Kutta approach with its intrinsic linearization between computed data points. We propose new variable step-size, variable order and variable step-size, variable order algorithms for automatic step-size control to increase the computational efficiency and reduce the computational costs even further for critical engineering models