Abstract
The kinetic effect of the phase inversion process on the membrane morphology is explored, with emphasis on the diffusion coefficient of the nonsolvent as a measure of the solvent/nonsolvent exchange rate. The diffusion coefficient is closely related to the nonsolvent tolerance of the polymer solution, which was estimated from a pseudo-ternary phase diagram of the following system: polymer: polysulfone; solvent system: a mixture of the solvent l-methyl-2-pyrrolidinone and a solvent additive (formic acid, water or ethanol); and nonsolvent: ethanol. Regardless of the kind of solvent additive employed, when the diffusion coefficient of the nonsolvent is high for a given gelation medium, then the membrane consists of a smooth, defect-free surface and macrovoid-free cross section, and is highly permeable to oxygen. However, using a polymer solution with a low diffusion coefficient results in a membrane of a rather defective morphology. Therefore, it is concluded that the diffusion coefficient of the nonsolvent is a crucial parameter in controlling membrane morphology