Abstract
The direct torque control (DTC) technique of permanent-magnet synchronous motors (PMSMs) receives increasing attention due to its advantages in eliminating the current controllers and quicker dynamic response, compared with other motor control algorithms. However, high torque and stator flux ripples remain in the system when using DTC technologies. This means large stator voltage and current harmonic contents exist in the PM motors. Since the variation of motor electromagnetic torque is related to the voltages that are applied to the motor, by analyzing the relationships between stator flux, torque, and voltages, a PMSM torque predictive control scheme is proposed in this paper. In each digital signal processor cycle, the optimized voltage is utilized to reduce torque ripple, and the voltage vector angle is determined by the output of torque and flux hysteresis controllers. The proposed scheme is simulated and experimentally verified. Both simulation and experimental results have shown that low torque ripple and reduced stator current harmonics are achieved by using the proposed scheme