Abstract
A multi-channel seismic reflection survey consisting of 20 lines with a total length of 180 km was conducted in the Sea of Galilee. The data provide new insights into the Pliocene–Quaternary evolution of the Kinarot–Beit–Shean pull-apart basin (KBSB) along the Dead Sea transform. Two distinct zones are defined beneath the lake: (1) a graben that underlies most of the lake, bounded by steep north–south longitudinal strike-slip faults and (2) shallow pre-rift units underlying the northwestern wider part of the lake. We suggest that before approximately 4 Ma, the KBSB grew due to northward movement of the Korazim Plateau and by crustal stretching along the rift axis. Since the Pliocene (f4 Ma), lateral slip has been transferred from the southern segment of the basin’s western marginal fault to normal faults in the Galilee, and to the eastern margin of the Korazim Plateau by the newly formed, Almagor fault, which makes a restraining bend along the transform. N–S lithospheric stretching below the KBSB has diminished and the Korazim Plateau has changed from being a detached block to a compressional saddle. A phase of rapid subsidence, and formation of a half-graben structure in the northern part of the basin approximately 1 Ma ago was coeval with major deformation in areas adjacent to the KBSB, indicating major reorganization of the plate boundary in the region. Currently, most transform motions are probably taken up along a single fault on the eastern side of the KBSB, implying that the main trough under the Sea of Galilee is in a late stage of growth as a pull-apart