دانلود تحقیق مهندسی کامپیوتر با عنوان پایگاه داده پیشرفته (داده کاوی در مفهوم) (فایل word)

داده کاوی فرآيندی است، خودکار برای استخراج الگوهايی که دانش را بازنمايی مي کنند، که اين دانش به صورت ضمنی در پايگاه داده های عظيم، انباره داده و ديگر مخازن بزرگ اطلاعات، ذخيره شده است. داده کاوی بطور همزمان از چندين رشته علمی بهره مي برد نظير: تکنولوژی پايگاه داده، هوش مصنوعی، يادگيری ماشين، شبکه های عصبی، آمار، شناسايی الگو، سيستم های مبتنی بر دانش ، حصول دانش ، بازيابی اطلاعات ، محاسبات سرعت بالا و بازنمايی بصری داده. می توانید این تحقیق رشته کامپیوتر را به صورت فایل word دانلود نمایید.
قیمت : 820,000 ریال
شناسه محصول : 2010172
نویسنده/ناشر/نام مجله :
سال انتشار:
تعداد صفحات فارسي : 32
نوع فایل های ضمیمه : word
حجم فایل : 408 Kb
کلمه عبور همه فایلها : www.daneshgahi.com
عنوان فارسي : تحقیق مهندسی کامپیوتر با عنوان پایگاه داده پیشرفته (داده کاوی در مفهوم) (فایل word)

چکیده

داده کاوی فرآيندی است، خودکار برای استخراج الگوهايی که دانش را بازنمايی مي کنند، که اين دانش به صورت ضمنی در پايگاه داده های عظيم، انباره داده  و ديگر مخازن بزرگ اطلاعات، ذخيره شده است. داده کاوی بطور همزمان از چندين رشته علمی بهره مي برد نظير: تکنولوژی پايگاه داده، هوش مصنوعی، يادگيری ماشين، شبکه های عصبی، آمار، شناسايی الگو، سيستم های مبتنی بر دانش ، حصول دانش ، بازيابی اطلاعات ، محاسبات سرعت بالا  و بازنمايی بصری داده. می توانید این تحقیق رشته کامپیوتر را به صورت فایل word دانلود نمایید.   

مقدمه

استفاده همگانی از وب و اينترنت به عنوان يک سيستم اطلاع رسانی جهانی ما را مواجه با حجم زیادی از داده و اطلاعات می‌کند. اين رشد انفجاری در داده‌های ذخيره شده، نياز مبرم وجود تکنولوژی های جديد و ابزارهای خودکاری را ايجاد کرده که به صورت هوشمند به انسان ياری رسانند تا اين حجم زياد داده را به اطلاعات و دانش تبديل کند: داده کاوی به عنوان يک راه حل برای اين مسائل مطرح مي باشد. در يک تعريف غير رسمی داده کاوی فرآيندی است، خودکار برای استخراج الگوهايی که دانش را بازنمايی مي کنند، که اين دانش به صورت ضمنی در پايگاه داده های عظيم، انباره داده  و ديگر مخازن بزرگ اطلاعات، ذخيره شده است. داده کاوی بطور همزمان از چندين رشته علمی بهره مي برد نظير: تکنولوژی پايگاه داده، هوش مصنوعی، يادگيری ماشين، شبکه های عصبی، آمار، شناسايی الگو، سيستم های مبتنی بر دانش ، حصول دانش ، بازيابی اطلاعات ، محاسبات سرعت بالا  و بازنمايی بصری داده  . داده کاوی در اواخر دهه 1980 پديدار گشته، در دهه 1990 گامهای بلندی در اين شاخه از علم برداشته شده و انتظار می رود در اين قرن به رشد و پيشرفت خود ادامه دهد [2]. واژه های «داده کاوی» و «کشف دانش در پایگاه داده»  اغلب به صورت مترادف یکدیگر مورد استفاده قرار می گیرند.  کشف دانش در پایگاه داده فرایند شناسایی درست، ساده، مفید، و نهایتا الگوها و مدلهای قابل فهم در داده ها می باشد. داده کاوی، مرحله ای از فرایند کشف دانش می باشد و شامل الگوریتمهای مخصوص داده کاوی است، بطوریکه، تحت محدودیتهای مؤثر محاسباتی قابل قبول، الگوها و یا مدلها را در داده کشف می کند [1]. به بیان ساده تر، داده کاوی به فرایند استخراج دانش ناشناخته، درست، و بالقوه مفید از داده اطلاق می شود. تعریف دیگر اینست که، داده کاوی گونه ای از تکنیکها برای شناسایی اطلاعات و یا دانش تصمیم گیری از قطعات داده می باشد، به نحوی که با استخراج آنها، در حوزه های تصمیم گیری، پیش بینی، پیشگویی، و تخمین مورد استفاده قرار گیرند. داده ها اغلب حجیم ، اما بدون ارزش می باشند، داده به تنهایی قابل استفاده نیست، بلکه دانش نهفته در داده ها قابل استفاده می باشد. به این دلیل اغلب به داده کاوی، تحلیل داده ای ثانویه  گفته می شود.

چه چيزی سبب پيدايش داده کاوی شده است؟

اصلی ترين دليلی که باعث شد داده کاوی کانون توجهات در صنعت اطلاعات قرار بگيرد، مساله در دسترس بودن حجم وسيعی از داده ها و نياز شديد به اينکه از اين داده ها اطلاعات و دانش سودمند استخراج کنيم. اطلاعات و دانش بدست آمده در کاربردهای وسيعی از مديريت کسب و کار وکنترل توليد و تحليل بازار تا طراحی مهندسی و تحقيقات علمی مورد استفاده قرار می گيرد. داده کاوی را می توان حاصل سير تکاملی طبيعی تکنولوژی اطلاعات دانست، که اين سير تکاملی ناشی از يک سير تکاملی در صنعت پايگاه داده می باشد، نظير عمليات: جمع آوری داده ها وايجاد پايگاه داده، مديريت داده و تحليل و فهم داده ها.

تکامل تکنولوژی پايگاه داده و استفاده فراوان آن در کاربردهای مختلف سبب جمع آوری حجم فراوانی داده شده است. اين داده های فراوان باعث ايجاد نياز برای ابزارهای قدرتمند برای تحليل داده ها گشته، زيرا در حال حاضر به لحاظ داده ثروتمند هستيم ولی دچار کمبود اطلاعات می باشيم.

ابزارهای داده کاوی داده ها را آناليز می کنند و الگوهای دادهای را کشف می کنند که می توان از آن در کاربردهايی نظير: تعيين استراتژی برای کسب و کار، پايگاه دانش  و تحقيقات علمی و پزشکی، استفاده کرد. شکاف موجود بين داده ها و اطلاعات سبب ايجاد نياز برای ابزارهای داده کاوی شده است تا داده های بی ارزش را به دانشی ارزشمند تبديل کنيم [2].

جایگاه داده کاوی در میان علوم مختلف

ریشه های داده کاوی در میان سه خانواده از علوم، قابل پیگیری می باشد [1]. مهمترین این خانواده ها، آمار کلاسیک  می باشد. بدون آمار، هیچ داده کاوی وجود نخواهد داشت، بطوریکه آمار، اساس اغلب تکنولوژی هایی می باشد که داده کاوی بر روی آنها بنا می شود. آمار کلاسیک مفاهیمی مانند تحلیل رگرسیون، توزیع استاندارد، انحراف استاندارد، واریانس، تحلیل خوشه، و فاصله های اطمینان را که همه این موارد برای مطالعه داده و ارتباط بین داده ها می باشد، را در بر می گیرد. مطمئنا تحلیل آماری کلاسیک نقش اساسی در تکنیکهای داده کاوی ایفا می کند.

دومین خانواده ای که داده کاوی به آن تعلق دارد هوش مصنوعی  می باشد. هوش مصنوعی که بر پایه روشهای ابتکاری می باشد و با آمار ضدیت دارد، تلاش دارد تا فرایندی مانند فکر انسان، را برای حل مسائل آماری بکار بندد. چون این رویکرد نیاز به توان محاسباتی بالایی دارد، تا اوایل دهه 1980 عملی نشد. هوش مصنوعی کاربردهای کمی را در حوزه های علمی و حکومتی پیدا کرد، اما نیاز به استفاده از کامپیوترهای بزرگ با عث شد همه افراد نتوانند از تکنیکهای ارائه شده استفاده کنند.

سومین خانواده داده کاوی، یادگیری ماشین  می باشد، که به مفهوم دقیقتر، اجتماع آمار و هوش مصنوعی می باشد. درحالیکه هوش مصنوعی نتوانست موفقیت تجاری کسب کند، یادگیری ماشین در بسیاری از موارد جایگزین آن گردید. از یادگیری ماشین به عنوان تحول هوش مصنوعی یاد شد، چون مخلوطی از روشهای ابتکاری هوش مصنوعی به همراه تحلیل آماری پیشرفته می باشد. یادگیری ماشین اجازه می دهد تا برنامه های کامپیوتری در مورد داده ای که آنها مطالعه می کنند، مانند برنامه هایی که تصمیمهای متفاوتی بر مبنای کیفیت داده مطالعه شده می گیرند، یادگیری داشته باشند و برای مفاهیم پایه ای آن از آمار استفاده می کنند و از الگوریتمها و روشهای ابتکاری هوش مصنوعی را برای رسیدن به هدف بهره می گیرند.

فهرست مطالب

 1 مقدمه ای بر داده‌کاوی       3

1-1 چه چيزی سبب پيدايش داده کاوی شده است؟ 4

1-2 مراحل کشف دانش       6

1-3 جایگاه داده کاوی در میان علوم مختلف       11

1-4 داده کاوی چه کارهایی نمی تواند انجام دهد؟ 12

1-5 داده کاوی و انبار داده  ها           13

1-6 داده کاوی و OLAP      14

1-7 کاربرد یادگیری ماشین و آمار در داده کاوی  15

2- توصیف داده ها در داده کاوی        16

2-1 خلاصه سازی و به تصویر در آوردن داده ها            16

2-2 خوشه بندی    16

2-3 تحلیل لینک    17

3- مدل های پیش بینی داده ها            17

3-1 Classification          17

3-2 Regression 18

3-3 Time series 18

4 مدل ها و الگوریتم های داده کاوی    18

4-1 شبکه های عصبی        19

4-2 Decision trees        22

4-3 Multivariate Adaptive Regression Splines(MARS)    24

4-4 Rule induction        25

4-5 K-nearest neibour and memory-based reansoning(MBR)    26

4-6 رگرسیون منطقی         27

4-7 تحلیل تفکیکی             27

4-8 مدل افزودنی کلی (GAM)         28

4-9 Boosting     28

5 سلسله مراتب انتخابها        29

 

Keywords: پایگاه داده داده کاوی هوش مصنوعی یادگيری ماشين آمار
این برای گرایش های: کلیه گرایش ها، کاربرد دارد. [ برچسب: ]