دانلود مقاله ترجمه شده زمانبندی کار در محیط ابر بر اساس بهینه سازی مورچگان


چطور این مقاله مهندسی کامپیوتر و IT را دانلود کنم؟

فایل انگلیسی این مقاله با شناسه 2001469 رایگان است. ترجمه چکیده این مقاله مهندسی کامپیوتر و IT در همین صفحه قابل مشاهده است. شما می توانید پس از بررسی این دو مورد نسبت به خرید و دانلود مقاله ترجمه شده اقدام نمایید

قیمت :
695,000 ریال
شناسه محصول :
2001469
سال انتشار:
2013
حجم فایل انگلیسی :
424 Kb
حجم فایل فارسی :
344 کیلو بایت
نوع فایل های ضمیمه :
Pdf+Word
کلمه عبور همه فایلها :
www.daneshgahi.com

عنوان فارسي

زمانبندی کار در محیط ابر بر اساس بهینه سازی مورچگان

عنوان انگليسي

Cloud Task Scheduling Based on Ant Colony Optimization

نویسنده/ناشر/نام مجله

Computer Engineering & Systems (ICCES), 2013 8th International Conference

این مقاله چند صفحه است؟

این مقاله ترجمه شده مهندسی کامپیوتر و IT شامل 6 صفحه انگلیسی به صورت پی دی اف و 19 صفحه متن فارسی به صورت ورد تایپ شده است

چکیده فارسی

چکیده

 پردازش ابری، توسعه محاسبات توزیع شده ، محاسبات موازی و محاسبات گیرید، و یا به عنوان پیاده سازی تجاری  این  مفاهیم علوم کامپیوتر، می باشد. یکی از مسائل اساسی در این محیط ،مربوط به زمانبندی کار است. زمانبدی کار در محیط ابر، یک مسئله بهینه سازی NP-hard است، و بسیاری از الگوریتم های فرا اکتشافی (meta-hueristic)پیشنهاد شده است که آن را حل کند.  یک زماننبد خوب کار باید استراتژی زماننبدی را به محیط در حال تغییر و انواع کارها، منطبق نماید. در این مقاله یک سیاست زماننبدی کار ابر بر اساس الگوریتم بهینه سازی کلونی مورچه ها در مقایسه با الگوریتم های زمانبندی مختلف FCFS و round-robin، معرفی شده است. هدف اصلی از این الگوریتم این است که به حداقل رساندن makespan  مجموعه کارهای داده شده است. بهینه سازی کلونی مورچه ها ،روش جستجو بهینه سازی تصادفی است که برای تخصیص  برای کارهای وارده به ماشین های مجازی، استفاده می شود. الگوریتم ،با استفاده از بسته ابزار Cloudsim شبیه سازی شده است. نتایج تجربی،نشان داد ه است که بهینه سازی کلونی مورچه ها عملکرد بهتری نسبت به الگوریتم های FCFSو round-robin داشته است.

کلمات کلیدی:پرزداش ابری. زماننبدی کار. makespan. بهینه سازی کلونی مورچه. CloudSim

1-مقدمه

پردازش ابری با یک الگوی جدید برای تأمین منابع محاسباتی مختلف،  همراه شده است ،معمولا به سه جنبه اساسی رسیدگی می نماید: زیرساخت به عنوان سرویس (IaaS)، پلت فرم به عنوان خدمات (PaaS) و نرم افزار به عنوان خدمات (SaaS)  [1]. با توجه به رشد سریع از پردازش ابری در چشم انداز IT، چندین تعریف پدید آمده است. پردازش ابری،را می توان به عنوان یک نوع از سیستم موازی  و توزیع شده شامل مجموعه ای از درون متصل شده وکامپیوترهای مجازی که به صورت دینامیک فراهم شده  و معرفی شده به عنوان یک یا چند منبع محاسباتی یکپارچه بر اساس توافق  سطح خدمات از طریق مذاکره بین ارائه دهنده خدمات و مصرف کنندگان [2] تعریف نمود. با پشتیبانی از تکنولوژی مجازی سازی پلتفرم ابر،  مراکز مهم را قادر می سازد تا منابع  محاسباتی را به صورت ماشین های  مجازی  به کاربران اجاره دهد [3]. از آنجا که صدها هزار نفر ازماشین های مجازی (VMS) استفاده می کنند،تخصیص  به صورت دستیوظایف به منابع محاسباتی در ابرها دشوار است [4]. بنابراین ما نیاز به یک الگوریتم کارآمد برای زماننبدی کار در محیط ابر داریم.

:پرزداش ابری زماننبدی کار makespan بهینه سازی کلونی مورچه CloudSim :کلمات کلیدی

چکیده انگلیسی


Abstract

Cloud computing is the development of distributed computing, parallel computing and grid computing, or defined as the commercial implementation of these computer science concepts. One of the fundamental issues in this environment is related to task scheduling. Cloud task scheduling is an NP-hard optimization problem, and many meta-heuristic algorithms have been proposed to solve it. A good task scheduler should adapt its scheduling strategy to the changing environment and the types of tasks. In this paper a cloud task scheduling policy based on ant colony optimization algorithm compared with different scheduling algorithms FCFS and round-robin, has been presented. The main goal of these algorithms is minimizing the makespan of a given tasks set. Ant colony optimization is random optimization search approach that will be used for allocating the incoming jobs to the virtual machines. Algorithms have been simulated using Cloudsim toolkit package. Experimental results showed that the ant colony optimization outperformed FCFS and round-robin algorithms

Keywords: Cloud Computing Task Scheduling makespan antcolonu optimization
کتابخانه الکترونیک
دانلود مقالات ترجمه شده
جستجوی مقالات
با انتخاب رشته مورد نظر خود می توانید مقالات ترجمه شده آن رو به صورت موضوع بندی شده مشاهده نمایید